Tag: Environnement



6 avr 10

Comme nous l’avons expliqué au début de ce chapitre, le compostage est réalisé par des micro-organismes. La vitesse et l’efficacité du compostage sont donc liées à la présence d’une population microbienne adéquate. Si la présence de ces milliards de bactéries et champignons est indispensable, leur ensemencement (’activateurs’ ou ’stimulateurs’ de compostage) semble peu, voire pas utile. Les spores de ces micro-organismes existent en effet en quantités suffisantes dans la nature et il est beaucoup plus important de veiller à créer un milieu (pH, humidité, aération, C/N, …) favorable à leur développement.

L’inoculation des composts par des micro-organismes fixateurs d’azote atmosphérique, tels que Azotobacter ne semble pas non plus intéressante pour le compostage, la dépense d’énergie de ces organismes pour fixer l’azote étant trop importante. Le seul intérêt de ce type d’inoculation pourrait provenir d’une éventuelle fixation d’azote, postérieure au compostage, pendant la culture des plantes sur les composts ainsi inoculés. Des expériences devraient être menées afin de démontrer la crédibilité‚ d’une telle hypothèse.

Aptitude au compostage (CNFP)

L’aptitude au compostage est un paramètre formé d’un code de quatre lettres, majuscules ou minuscules, il représente les quatre aspects fondamentaux à réunir pour réaliser un bon compost : ‘C’ ou ‘c’ pour carbone, ‘N’ ou ‘n’ pour azote, ‘F’ ou ‘f’ pour le degré de fermentescibilité (c.-à-d. l’aptitude à fermenter du produit), et ‘P’ ou ‘p’ pour la porosité totale. Une lettre minuscule indique un apport correct pour cet aspect, une lettre majuscule indiquant des propriétés améliorantes. L’absence d’une lettre (’—’) signifie un manque, à complémenter par un produit ayant des propriétés améliorantes pour le même facteur. La réalisation du compost se fera donc en combinant deux sous-produits (trois à la rigueur) ayant des propriétés complémentaires de telle manière que les quatre lettres du code soient présentes dans le mélange réalisé.

‘c’ ou ‘C’

‘c’ indique un produit possédant un rapport C/N correct (15 à 30). ‘C’ indique un produit à forte teneur en carbone, c’est-à-dire ayant un C/N supérieur à 75. Un tel produit devra être mélangé à un produit de type ‘N’ ou recevra un supplément d’azote sous forme d’engrais minéral (urée par exemple).

‘n’ ou ‘N’

Complémentaire du facteur précédant, ‘n’ indique un C/N correct ; ‘N’ indique un C/N faible (inférieur à 10) nécessitant un mélange avec un produit de type ‘C’ ; un matériau (Un matériau est une matière d’origine naturelle ou artificielle que l’homme façonne pour en faire des objets.) à C/N élevé sera de type ‘—’ pour ce facteur.

‘f’ ou ‘F’

Donne une indication sur la forme du carbone présent: ‘f’ représente un équilibre convenable entre les molécules à fermentation rapide (sucres) et les molécules à dégradation lente (lignines). Les molécules à dégradation rapide sont nécessaires au démarrage de la fermentation et à l’obtention d’une température élevée dans la masse de compost (’pasteurisation’ du compost). Un matériau riche en ces molécules sera de type ‘F’, un matériau pauvre de type ‘—’. Les molécules à dégradation lente quant à elles serviront de base à la biosynthèse des composés humiques.

‘p’ ou ‘P’

La porosité à l’air du matériau est importante pour son rôle sur l’aération du compost et sur la rétention en eau (la porosité à l’eau, exprimée en pourcent de la porosité totale, est le complément à 100 de la porosité à l’air). Elle est influencée principalement par la dimension des particules. Un matériau dont la porosité à l’air est élevée (’P', matériau de structuration) permettra par exemple de réaliser des tas de composts de volume plus important sans risquer un tassement qui empêcherait la circulation de l’air. Il pourra aussi servir de matériau de base à mélanger avec des matériaux (Un matériau est une matière d’origine naturelle ou artificielle que l’homme façonne pour en faire des objets.) sans structure (’—’: boues de stations d’épuration ou eaux de process industriel par exemple). ‘p’ représente un matériau présentant un bon équilibre entre la porosité à l’air et la porosité à l’eau.

Il faut remarquer que le compostage, en soi, ne nécessite pas un structurant d’origine organique. Des copeaux de caoutchouc (issus de vieux pneus) peuvent être utilisés, par exemple pour le compostage de boues de stations d’épuration.







29 mar 10

pH

Généralement, les matières à composter présentent un pH compris entre 5 et 7, c’est-à-dire dans des limites acceptables. Le pH s’abaisse pendant les premiers jours (Le jour ou la journée est l’intervalle qui sépare le lever du coucher du Soleil ; c’est la période entre deux…) et remonte ensuite pour devenir neutre ou légèrement alcalin. Certains auteurs recommandent cependant l’adjonction d’un tampon ou d’une base faible (calcaires ou dolomie broyés, marne, craie phosphatée…), d’autres s’y refusent car cela peut provoquer un ralentissement du processus. Sans adjonction de tampon, le pH final du compost est au alentour de 8.

Forme du carbone (Table complète – Table étendue)

Elle influence beaucoup la vitesse (La vitesse est une grandeur physique qui permet d’évaluer l’évolution d’une quantité en fonction du temps.) de décomposition du compost. Certaines des molécules, tels les glucides simples, l’amidon, les hémicelluloses, les pectines et les acides aminés, sont aisément dégradables. La cellulose, polymère plus volumineux, est plus résistante. La lignine et les autres polymères aromatiques, extrêmement solides, seront dégradés plus tardivement, plus lentement et incomplètement (conduisant à la formation d’humus).

Rapport C/N

Un rapport trop faible (inférieur à 15) conduit à des pertes d’azote ; un C/N trop élevé ralentit la décomposition. La quantité d’azote (Table complète – Table étendue) à ajouter est difficile à estimer car il faut tenir compte du taux de fermentescibilité du carbone.

Rapport C/P

Le phosphore est essentiel aux réactions énergétiques des micro-organismes (Adénosine Tri-Phosphate). Il entre aussi dans la composition de nombreuses autres macro-molécules. Un rapport C/P de la matière à composter voisin de celui de la microflore (75 à 150) conduit à une dégradation plus rapide de la matière organique et à une plus grande production d’humus.

Autres éléments minéraux

Les matières à composter doivent être considérées comme un milieu de culture pour microbes, où le facteur limitant ne peut être que le carbone assimilable et non un autre constituant du milieu. Ces éléments sont en général présents en quantité suffisante dans la matière organique à composter.

cyle_azote

cycle_azote-5920e







22 mar 10

La progression du matériel de départ vers le stade (Un stade (du grec ancien στ?διον stadion, du verbe ?στημι istêmi,…) final, l’humus, dépend d’un grand nombre de facteurs externes comme la dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d’une pièce sont sa longueur, sa…) des particules, la nature des nutriments, leur structure, le taux d’humidité, l’aération, le pH… D’autre part, en se multipliant, les micro-organismes changent constamment leur environnement et le rendent souvent impropre à leur développement.

Conditions physiques

Aération

Ce facteur est essentiel puisque le compostage est un processus aérobie. On estime que l’air devrait occuper au moins 50% du volume (En physique, le volume d’un objet mesure « l’extension dans l’espace » qu’il possède dans les trois…) du tas. L’anaérobiose commence lorsque le taux d’oxygène du tas est inférieur à 10%; elle prédomine au dessous de 5% d’O2 (air = 21% O2). Diverses techniques permettent de rétablir l’aérobiose, elles seront décrites ci-dessous.

Humidité

Comme pour un substrat de culture (La définition que donne l’UNESCO de la culture est la suivante [1] :), l’aération et l’humidité du compost sont liées : un excès d’eau (L’eau (que l’on peut aussi appeler oxyde de dihydrogène, hydroxyde d’hydrogène ou acide hydroxyque) est un…) diminue la quantité d’air disponible dans le volume de compost. Un système d’aération plus efficace sera alors nécessaire.

La chaleur (Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !) libérée par la fermentation provoque l’évaporation (L’évaporation est un passage progressif de l’état liquide à l’état gazeux. Elle est différente de l’ébullition qui est…) d’une grande quantité d’eau. On arrosera la masse en fermentation si nécessaire de manière à maintenir un taux d’humidité de 50 à 70% de la masse fraîche (c’est-à-dire l’équivalent de la capacité au champ pour un sol). D’autre part, on veillera à la protéger des pluies battantes et de l’évaporation excessive par le soleil ((pourcentage en masse)) (surtout en régions intertropicales). Une toiture sera alors la bienvenue.

Dimension des particules

Outre son rôle sur la porosité à l’air et la rétention en eau du milieu, un des effets de la dilacération préalable (broyage) est d’augmenter la surface (Il existe de nombreuses acceptions au mot surface, parfois objet géométrique, parfois frontière physique, souvent…) de contact entre les déchets et la microflore. Une réduction de la taille des particules entraîne donc un accroissement du taux de décomposition mais aussi une circulation (La circulation routière (anglicisme: trafic routier) est le déplacement de véhicules automobiles sur une route.) d’air plus faible (risque d’anaérobiose).

Température

Un tas de compost dégageant de la vapeur un matin froid.

Par leur respiration les micro-organismes dégagent une chaleur telle que les températures atteintes (80 et même plus de 90 °C dans un tas bien isolé) peuvent devenir létales pour les cellules. On veillera à ne pas dépasser une température de 70 °C.

temperature